Abstract
We present a Bayesian isochron approach to interpret measurements of multiple cosmogenic nuclides from glacially modified bedrock surfaces with complex exposure histories. An isochron approach explicitly incorporating glacial erosion is ideally suited for this problem; such erosion must be accounted for but has traditionally been ignored. Previous methods required treating each sample individually (to account for glacial erosion) and subsequently averaging results for the entire dataset. Geological considerations, however, suggest a more robust approach is to treat samples in the dataset here (and samples from other conceivable datasets) simultaneously. The Bayesian isochron method is applied to a previously published set of in situ14C and 10Be measurements from a set of samples spanning the forefield of the Rhone Glacier, Switzerland. Results indicate 6.4 ± 0.5 kyr of integrated exposure and 4.7 ± 0.5 kyr of cumulative burial, similar to previous estimates, but with much smaller uncertainties. The reduced uncertainties result from fitting the exposure and burial duration to the entire dataset, while explicitly accounting for glacial erosion. The method presented here should be applicable with minor modifications in a number of geologic settings, and further demonstrates the utility of paired in situ10Be and 14C measurements for unraveling complex exposure histories over during the Holocene and late Pleistocene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.