Abstract
Molybdenum disulfide (MoS2) is a promising earth-abundant and low-cost electrocatalyst for the hydrogen evolution reaction (HER). In this study, we describe a stepwise synthetic approach comprising vapor transport, reduction, and topochemical sulfidation for creating 3D arrays of MoS2 nanosheets directly integrated onto carbon fiber paper (CFP) substrates. The sulfidation process results in a high density of edge sites along both the edges and the basal planes of MoS2. The obtained materials characterized by a high density of exposed edge sites exhibit promising electrocatalytic performance, including an overpotential (η10) of 245 mV at 10 mA/cm2, a Tafel slope of 81 mV/dec, and a turnover frequency (TOF) of 1.28 H2/s per active site at −0.2 V vs RHE in a 0.5 M acidic solution. The electrocatalytic properties of the MoS2 nanosheets are observed to be substantially enhanced by interfacing with solution-deposited buckminsterfullerene nanoclusters (nC60). A coverage of ca. 2% of nC60 yields a hybrid electroc...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.