Abstract

Microplastics are defined as pieces of plastic that are smaller than 5 mm and they are now considered one of the most abundant ubiquitous plastic debris. Microbial communities that settle on particles can potentially lead to the transport of pathogenic and harmful bloom-forming species, as well as have an impact on global biogeochemical cycles. However, little is known about the acclimation of microbes to different types of microplastic in the estuarine environment. In this study, 16S ribosomal RNA sequencing and analysis was performed on biofilm samples from three different types of microplastic beads placed in Baltimore’s Inner Harbor. Microbial communities associated with microplastic particles and glass bead control were monitored throughout the 28-day incubation time. A significant taxonomic composition dissimilarity was observed between particles-associated and free-living communities, suggesting a unique microbial adaptation to these biofilms. The polymer types, however, did not significantly influence the microbial community composition. Some families with interesting potential metabolism were identified in the plastisphere samples, including Cyanobacteria, Planctomycetes, Desulfobacteriota, and Firmicutes, leading into speculation of their ecological responses and metabolic roles in the estuarine environment. It is crucial to understand the microorganisms that inhabit plastic debris in estuarine systems and their potential metabolic capacity and how it may differ from its marine counterparts in order to assess their roles in global nutrient cycles and if they have ability to be utilized in bioremediation for plastic pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.