Abstract

This Letter presents field‐based evidence of the perturbing effects of surface anisotropy on the remote sensing of burned savannah. The analysis is based on bidirectional spectral reflectance data collected at different solar illumination angles and convolved to Moderate‐resolution Imaging Spectroradiometer (MODIS) reflective bands. Results from a grass savannah site show that burning reduces the anisotropy of the surface compared to its pre‐burn state. In contrast, at a shrub savannah site, burning reduces or increases surface anisotropy. Spectral indices defined from 1.240 µm and 2.130 µm reflectance, and 1.640 µm and 2.130 µm reflectance, provided stronger diurnal separation between burned and unburned areas than individual reflectance bands but do not eliminate anisotropic effects. The Normalized Difference Vegetation Index (NDVI) provides weak diurnal separation relative to these near‐ and mid‐infrared based indices. Implications of the findings are discussed for burned area mapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.