Abstract
Herein the structure of the interfacial layer between the air- and water-stable ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([EMIM]FAP) and Au(111) is investigated using in situ scanning tunneling microscopy (STM), distance tunneling spectroscopy (DTS) and cyclic voltammetry (CV) measurements. The in situ STM measurements reveal that structured interfacial layers can be probed in both cathodic and anodic regimes at the IL/Au(111) interface. The structure of these layers is dependent on the applied electrode potential, the number of subsequent STM scans and the scan rate. Furthermore, first DTS results show that the tunneling barrier during the 1st STM scan does not seem to change significantly in the cathodic potential regime between the ocp (-0.2 V) and -2.0 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.