Abstract

Micro-mechanical behaviors of a Cu46.5Zr46.5Al7 bulk metallic glass composite in the plastic regime were investigated by continuous in situ neutron diffraction during compression. Three stages of the plastic deformation were observed according to the work-hardening rate. The underlying natures of the work hardening, correlating with the lattice/microscopic strain evolution, are revealed for the three stages: (1) the initiation of shear bands, (2) the phase load transferring from the amorphous phase to the B2 phase and (3) the accelerated martensitic transformation and the work hardening of the polycrystalline phases promoted by the rapid propagation of the shear bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.