Abstract
To test the iron hypothesis in the subarctic Pacific Ocean, an in situ iron-enrichment experiment (SEEDS) was performed in the western subarctic gyre in July–August 2001. About 350 kg of iron (as acidic iron sulfate) and 0.48 mol of the inert chemical tracer sulfur hexafluoride were introduced into a 10-m deep surface mixed layer over an 80 km 2 area. This single iron infusion raised dissolved iron levels to ∼2.9 nM initially. Dissolved iron concentrations rapidly decreased after the infusion, but levels remained close to 0.15 nM even at the end of the 14-day experimental period. During SEEDS there were iron-mediated increases in chlorophyll a concentrations (up to 20 μg l −1), primary production rates, biomass and photosynthetic energy conversion efficiency relative to waters outside the iron-enriched patch. The rapid and very high accumulation of phytoplankton biomass in response to the iron addition appeared to be partly attributable to shallow mixed-layer depth and moderate water temperature in the western subarctic Pacific. However, the main reason was a floristic shift to fast-growing centric diatom Chaetoceros debilis, unlike the previous iron-enrichment experiments in the equatorial Pacific and the Southern Ocean, in both of which iron stimulated the growth of pennate diatoms. The iron-mediated blooming of diatoms resulted in a marked consumption of macronutrients and drawdown of pCO 2. Biological and physiological measurements indicate that phytoplankton growth in the patch became both light- and iron-limited, making phytoplankton biomass relatively constant after day 9. The increase in microzooplankton grazing rate after day 9 also influenced the net growth rate of phytoplankton. There was no significant increase in the export flux of carbon to depth during the 14-day occupation of the experimental site. The export flux between day 4 and day 13 was estimated to be only 13% of the integrated primary production in the iron-enriched patch. The major part of the carbon fixed by the diatom bloom remained in the surface mixed layer as biogenic particulate matter. Our findings support the hypothesis that iron limits phytoplankton growth and biomass in a ‘bottom up’ manner in this area, but the fate of algal carbon remains unknown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.