Abstract
As modern fishery assessments change in an effort to be more accurate and encompass the range of potential ecosystem interactions, critical information on the ecology of species including life history, intra and inter-specific competitive interactions and habitat requirements must be added to the standard fishery-dependent and independent data sets. One species whose movements and habitat associations greatly affects exploitation patterns is lingcod, Ophiodon elongatus, which support an economically important fishery along the coastal waters of the Pacific Coast of North America. High site fidelity and limited movements within nearshore areas are hypothesized to have resulted in high catchability, a major factor that has contributed to overfished stocks. Thus, assessing the level of movement and connectivity among lingcod subpopulations inhabiting nearshore habitats is a prerequisite to determining the condition of lingcod stocks. We used the Pacific Ocean Shelf Tracking (POST) Project acoustic receiver array in Alaska's Prince William Sound to monitor movements and residency of 21 acoustic-tagged lingcod for up to 16 months. Eight of sixteen lingcod (50%) initially aged at 2.5- to 3.5- years-old dispersed from their tag site. Dispersal was highly seasonal, occurring in two, five-week periods from mid-December through January and from mid-April through May. Dispersal in winter may be related to sexually immature lingcod or newly-mature male lingcod being displaced by territorial males. Spring dispersal may be indicative of the onset of migratory behavior where lingcod move out into Prince William Sound and possibly the offshore waters of the Gulf of Alaska. Our results reveal a pattern of ontogenetic dispersal as lingcod approach 4-years-old and exceed 50 cm total length. The large proportion of tagged fish migrating out of Port Gravina, their tagging site, reflects a high level of connectivity among Prince William Sound subpopulations. Our results also support the hypotheses that these subpopulations may be highly susceptible to overfishing because most fish show long residence times.
Highlights
Movements of mobile fish can influence both ecological and fisheries interactions on multiple spatial scales
Lingcod Ophiodon elongatus is an exception to this generic paradigm because there is no egg dispersal, eggs are deposited at nest sites, and larvae are relatively large when in the plankton
Fisheries interaction can be influenced by movement patterns with fish showing high site fidelity and limited movement being easier to exploit by technologically advanced fishers (e.g. GPS and sonar that locates bottom structure)
Summary
Movements of mobile fish can influence both ecological and fisheries interactions on multiple spatial scales. Large-scale (100’s of km) movements occur primarily via egg and larval dispersal in the early life stages of most marine invertebrates and fishes and have profound effects on fishery stock dynamics because of the high potential for connectivity [1]. Smaller or regional scale (m–km’s) connectivity patterns of juvenile and adult fish are influenced by a combination of morphological, behavioral and environmental variables. Regional and local (m’s) scale movements have relatively minor impacts on stock ranges, movements on these scales can greatly influence ecological and fisheries interactions. Fisheries interaction can be influenced by movement patterns with fish showing high site fidelity and limited movement being easier to exploit by technologically advanced fishers (e.g. GPS and sonar that locates bottom structure). Repeated use of the same areas by fish can dramatically increase catchability via reduced unit effort to find a fish, which may not be predicted by fishery models and could lead to higher exploitation levels [4]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.