Abstract

This work aims to develop a novel multimode (photothermal/colorimetric/fluorescent) nanozyme-linked immunosorbent assay (NLISA) based on the in situ generation of Prussian blue nanoparticles (PBNPs) on the surface of magnetic nanoparticles (MNPs). Being considered the most toxic among the mycotoxins, aflatoxin B1 (AFB1) was chosen as the proof-of-concept target. In this strategy, MNPs, on which an AFB1 aptamer was previously assembled via streptavidin-biotin linkage, are anchored to 96-well plates by AFB1 and antibody. In the presence of HCl and K4Fe(CN)6, PBNPs formed in situ on the MNP surface, thereby achieving photothermal and colorimetric signal readout due to their photothermal effect and intrinsic peroxidase-like activity. Based on fluorescence quenching by MNPs, Cy5 fluorescence was recovered by the in situ generation of PBNPs to facilitate ultrasensitive fluorescence detection. Photothermal and colorimetric signals allow portable/visual point-of-care testing, and fluorescent signals enable accurate determination with a detection limit of 0.54 fg/mL, which is 6333 and 28 times lower than those of photothermal and colorimetric analyses, respectively. We expect that this proposed multimode NLISA can not only reduce the false-positive/negative rates through the multisignal crossdetection in AFB1 monitoring but also provide a universal way of sophisticated instrumentation-free, easy-to-use, cost-effective, and highly sensitive detection of other food hazards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.