Abstract

In order to gain a molecular understanding of why quercetin characteristics are altered by glucosylation, DFT calculations and MD simulations were utilized. According to DFT findings, glucosylation of quercetin altered its structural stability, molecular polarity, molecular polarizability, and Gibbs free energy of transfer, which gives a molecular explanation for the observed alterations in the aqueous solubility and lipophilicity of derivatives. The outcomes of MD simulations also demonstrated how the various hydroxyl groups of quercetin interact with solvent molecules and how glucosylation can have an impact on that. Additionally, it was shown that glucosylation often increased the number of hydrogen bonds and the nonbonded interaction energies between the molecules of the solvent and the solute. The solubility behavior of glucosylated derivatives in water and alcoholic solvents can be reasonably interpreted molecularly using these results, which could suggest approaches for improving the features of these kinds of bioactive compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.