Abstract

Superoxide dismutase [Cu-Zn], or SOD1, is a homo-dimeric protein that functions as an antioxidant by scavenging for superoxides. A wide range of SOD1 variants are linked to inherited, or familial, amyotrophic lateral sclerosis, a progressive and fatal neurodegenerative disease. Aberrant SOD1 oligomerization has been strongly implicated in disease causation, even for sporadic ALS, or SALS, which accounts for ~90% of ALS cases. Small heat shock proteins (sHSP) have been shown to protect against amyloid fibril formation in vitro, and the sHSP αB-crystallin suppresses in vitro aggregation of SOD1. We are seeking to elucidate the structural features of both SOD1 amyloid formation and αB-crystallin amyloid suppression. Specifically, we have used a flexible docking protocol to refine our model of a SOD1 non-obligate tetramer, postulated to function as a transient desolvating complex. Homology modeling and molecular dynamics (MD) are used to supply the missing structural elements of a previously characterized SOD1 amyloid filament, thereby providing a structural analysis for the observed gain of interaction. This completed filament is then further modified using MD to provide a structural model for protofibril capping of SOD1 filaments by αB-crystallin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.