Abstract

Spatial organization is a characteristic of all cells, achieved in eukaryotic cells by utilizing both membrane-bound and membrane-less organelles. One of the key processes in eukaryotes is RNA splicing, which readies mRNA for translation. This complex and highly dynamical chemical process involves assembly and disassembly of many molecules in multiple cellular compartments and their transport among compartments. Our goal is to model the effect of spatial organization of membrane-less organelles (specifically nuclear speckles) and of organelle heterogeneity on splicing particle biogenesis in mammalian cells. Based on multiple sources of complementary experimental data, we constructed a spatial model of a HeLa cell to capture intracellular crowding effects. We then developed chemical reaction networks to describe the formation of RNA splicing machinery complexes and splicing processes within nuclear speckles (specific type of non-membrane-bound organelles). We incorporated these networks into our spatially-resolved human cell model and performed stochastic simulations for up to 15 minutes of biological time, the longest thus far for a eukaryotic cell. We find that an increase (decrease) in the number of nuclear pore complexes increases (decreases) the number of assembled splicing particles; and that compartmentalization is critical for the yield of correctly-assembled particles. We also show that a slight increase of splicing particle localization into nuclear speckles leads to a disproportionate enhancement of mRNA splicing and a reduction in the noise of generated mRNA. Our model also predicts that the distance between genes and speckles has a considerable effect on the mRNA production rate, with genes located closer to speckles producing mRNA at higher levels, emphasizing the importance of genome organization around speckles. The HeLa cell model, including organelles and sub-compartments, provides a flexible foundation to study other cellular processes that are strongly modulated by spatiotemporal heterogeneity.

Highlights

  • Cells use spatial organization to mediate their complex biochemical reaction networks

  • A computational model of spliceosomal function must contain a spatial model of the entire cell

  • The assumptions of constructing the spatial model of the human cell and the reaction schemes include: 1. Our study aims to investigate the RNA splicing process and the main organelles that are directly associated with this process including: the nucleus, nuclear speckles, Cajal bodies and parts of the cytoplasm (ER, mitochondria, Golgi apparatus)

Read more

Summary

Introduction

Cells use spatial organization to mediate their complex biochemical reaction networks. Membranes have long been recognized as means to confine organelle-specific biomolecules, non-membrane-bound organelles are increasingly found to play crucial roles in cellular function [1]. Such membraneless organelles can be formed as liquid-liquid phaseseparated regions, and are known as “liquid droplets” [2]. Cells have numerous such liquid droplets that form either in the cytoplasm or in the nucleus [3, 4]. Nuclear speckles, or interchromatin granules, are droplets formed in the nucleus that are thought to be primarily involved in pre-mRNA splicing [5]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.