Abstract

Till date the challenge exists in the treatments of cancer for various reasons. Most importantly, the available diagnostics are expensive with research gap for enhancing the cancer detection sensitivity. Herein, a series of coumarin-derived fluorescent theranostic probes are reported that can serve as potent anticancer agents as well as in the detection of cancer cells. The potential of these probes to efficiently block one of the well-known cancer drug targets NADPH quinone oxidoreductase-1 (NQO1) is evaluated through various pharmacokinetic methods including absorption, distribution, metabolism and excretion (ADME) properties evaluation, PASS (prediction of activity spectra for substance) algorithm along with molecular docking and dynamic simulations. Further the luminescent properties of these molecules were evaluated by investigating their electronic properties in the ground and excited states with the help of density functional theory methods. Results indicate that the proposed molecules can potentially block the NADPH (reduced form of nicotinamide adenine dinucleotide) binding site of NQO1, thereby inhibiting the activity of the enzyme to ultimately disrupt the metabolism of cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call