Abstract
Plasmopara viticola, an obligate biotrophic oomycete, is the causal agent of one of the most harmful grapevine diseases, downy mildew. Within this pathosystem, much information is gathered on the host, as characterization of pathogenicity and infection strategy of a biotrophic pathogen is quite challenging. Molecular insights into P. viticola development and pathogenicity are just beginning to be uncovered, mainly by transcriptomic studies. Plasmopara viticola proteome and secretome were only predicted based on transcriptome data. In this study, we have identified the in-planta proteome of P. viticola during infection of a susceptible (‘Trincadeira’) and a Rpv3-mediated resistance (‘Regent’) grapevine cultivar. Four hundred and twenty P. viticola proteins were identified on a label-free mass spectrometry-based approach of the apoplastic fluid of grapevine leaves. Overall, our study suggests that, in the compatible interaction, P. viticola manipulates salicylic-acid pathway and isoprenoid biosynthesis to enhance plant colonization. Furthermore, during the incompatible interaction, development-associated proteins increased while oxidoreductases protect P. viticola from ROS-associated plant defence mechanism. Up to our knowledge this is the first in-planta proteome characterization of this biotrophic pathogen, thus this study will open new insights into our understanding of this pathogen colonization strategy of both susceptible and Rpv3-mediated resistance grapevine genotypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.