Abstract
This paper presents the fabrication, modeling, and characterization of an in-plane approximated nonlinear MEMS electromagnetic energy harvester (EM-EH) device. The approximated nonlinearity and frequency broadening of the device are realized by incorporating small suspension structures, which introduces the spring hardening effect and thus increases the operating frequency of the device toward a higher frequency interval. From the experimental results, the resonant frequencies during frequency up-sweep have been shifted from the original resonance of 82 Hz to 123.5, 135, and 146.5 Hz, at the accelerations of 1.0, 2.0 and 3.0 g, respectively. The corresponding power densities at resonances are 1.6 × 10-8, 2.8 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-8</sup> , and 5.6 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-8</sup> W/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> . This paper offers a new design methodology of the approximated nonlinear MEMS EM-EH device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.