Abstract

This paper presents an energy-efficient and high throughput architecture for convolutional neural networks (CNN). Architectural and circuit techniques are proposed to address the dominant energy and delay costs associated with data movement in CNNs. The proposed architecture employs a deep in-memory architecture, to embed energy-efficient low swing mixed-signal computations in the periphery of the SRAM bitcell array. An efficient data access pattern and a mixed-signal multiplier are proposed to exploit data reuse opportunities in convolution. Silicon-validated energy, delay, and behavioral models of the proposed architecture are developed and employed to perform large-scale system simulations. System-level simulations using these models show 97% detection accuracy on the MNIST data set, along with 4.9× and 2.4× improvements in energy efficiency and throughput, respectively, leading to 11.9× reduction in energy-delay product as compared with a conventional (SRAM + digital processor) architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.