Abstract

This paper describes a novel, simple, and low-cost device to perform in vitro photodynamic therapy (PDT) assays, named the PhotoACT. The device was built using a set of conventional programmable light-emitting diodes (LEDs), a liquid crystal display (LCD) module, and a light sensor connected to a commercial microcontroller board. The box-based structure of the prototype was made with medium-density fiberboards (MDFs). The internal compartment can simultaneously allocate four cell culture multiwell microplates. As a proof of concept, we studied the cytotoxic effect of the photosensitizer (PS) verteporfin against the HeLa cell line in two-dimensional (2D) culture. HeLa cells were treated with increasing concentrations of verteporfin for 24 h. The drug-containing supernatant medium was discarded, the adherent cells were washed with phosphate-buffered saline (PBS), and drug-free medium was added. In this study, the effect of verteporfin on cells was examined either without light exposure or after exposure for 1 h to light using red-green-blue (RGB) values of 255, 255, and 255 (average fluence of 49.1 ± 0.6 J/cm2). After 24 h, the cell viability was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. Experimental results showed that exposure of cells treated with verteporfin to the light from the device enhances the drug's cytotoxic effect via a mechanism mediated by reactive oxygen species (ROS). In addition, the use of the prototype described in this work was validated by comparing the results with a commercial PDT device. Thus, this LED-based photodynamic therapy prototype represents a good alternative for in vitro studies of PDT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.