Abstract

As the Internet of Things (IOT) is growing rapidly, there is an emerging need to facilitate development of IOT devices in the design cycle while optimized performance is obtained in the field of operation. This paper develops reconfiguration approaches that enable post-production adaptation of circuit performance to enable RF IC re-use across different IOT applications. An adaptable low noise amplifier (LNA) is designed and fabricated in 130nm CMOS technology to investigate the post-production reconfiguration concept. A statistical model that relates circuit-level reconfiguration parameters to circuit performances is generated by characterizing a limited number of samples. A deep learning algorithm is used to generate the model. This model is used to predict the performance parameters of the device in the field. The estimation error for LNA performance parameters are obtained in the simulation environment as well as chip measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.