Abstract
The cleaning effectiveness of agar gels for copper stain removal from marble is mainly related to the gel morphology and to the possibility of copper coordination. • Different agar gel formulations were tested for copper stain removal from marble. • Hydrogel lyophilisation allowed to systematically compare gel formulations. • The relationship between gel morphology and effectiveness was assessed. • AgarArt 1% with TAC was the most effective gel for copper removal from marble. • EDTA in gels leads to a broader pore size distribution and to a lower gel strength. The effectiveness of Agar gels for copper stain removal from marble surfaces was systematically studied. Gels with different agar concentrations (1, 3, 5%) and different chelating agents used as additives (ethylenediaminetetraacetic acid, EDTA, and ammonium citrate tribasic, TAC) were tested on laboratory marble specimens for different contact times (30 and 60 min). For better characterization, hydrogels were lyophilised and cryogels were obtained. Systematic comparison of different formulations was feasible on cryogels and performed in terms of: (i) the morphological properties, by field-emission scanning electron microscopy (FE-SEM); (ii) the type of Cu(II)-complexes formed and their quantitative comparison by electron paramagnetic resonance (EPR) spectroscopy; (iii) the total amount of copper removed from marble surfaces, by Inductively Coupled Plasma–Optical Emission Spectrometry (ICP-OES). AgarArt 1% with TAC exhibited the highest effectiveness for copper stain removal after 60 min contact (431 μg/cm 2 ). Such a good cleaning effectiveness can be ascribed to the co-presence of the following properties: efficient metal coordination, which is related to the additive presence, and favourable gel morphology, related both to the gel concentration and to the additive type. In fact, it was observed that both the low gel concentration and the presence of TAC are related to a narrow pore size distribution in gels, besides the possibility of copper coordination. The presence of EDTA results in a broader pore size distribution and in a lower gel strength, with respect to gels with TAC. Thus, a new procedure for studying gels was proposed, which allows to optimize the conditions for metal stain removal from built heritage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.