Abstract
This paper describes a synthetic aperture sonar (SAS) dataset collected in-air consisting of four types of targets in four environments of different complexity. The in-air laboratory based experiments produced data with a level of fidelity and ground truth accuracy that is not easily attainable in data collected underwater. The range of complexity, high level of data fidelity, and accurate ground truth provides a rich dataset with acoustic features on multiple scales. It can be used to develop new signal-processing and image reconstruction algorithms, as well as machine learning models for object detection and classification. It may also find application in model verification and validation for acoustic simulators. The dataset consists of raw acoustic time series returns, associated environmental conditions, hardware configuration, array motion, as well as the reconstructed imagery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.