Abstract
We propose a method to improve the measure of real-valued time series irreversibility which contains two tools: the directed horizontal visibility graph and the Kullback–Leibler divergence. The degree of time irreversibility is estimated by the Kullback–Leibler divergence between the in and out degree distributions presented in the associated visibility graph. In our work, we reframe the in and out degree distributions by encoding them with different embedded dimensions used in calculating permutation entropy(PE). With this improved method, we can not only estimate time series irreversibility efficiently, but also detect time series irreversibility from multiple dimensions. We verify the validity of our method and then estimate the amount of time irreversibility of series generated by chaotic maps as well as global stock markets over the period 2005–2015. The result shows that the amount of time irreversibility reaches the peak with embedded dimension d=3 under circumstances of experiment and financial markets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.