Abstract
In this paper, we improve the preconditioner, that introduced by H. Wang et al [6]. The H. Wang preconditioner \(P\in R^{n\times n}\) has only one non-zero, non-diagonal element in \(P_{n1}\) or \(P_{1n}\) , when \(a_{1n}a_{n1}\ne 0\) . But the new preconditioner has only one non-zero, non-diagonal element in \(P_{ij}\) or \(P_{ji}\) if \(a_{ij}a_{ji}\ne 0\), so the H. Wang preconditioner is a spacial case of the new preconditioner for L-matrices. Also we present two models to construct a better \(I+S\) type preconditioner for the \(AOR\) iterative method. Convergence analysis are given, numerical results are presented which show the effectiveness of the new preconditioners.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Mathematical Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.