Abstract

Multi-Objective Evolutionary Algorithms (MOEAs) have been widely used for solving multi-objective optimization problems (MOPs). As the number of objectives is more than three, MOPs are regarded as many-objective optimization problems (MaOPs). They bring difficulties to existing MOEAs in terms of deterioration of the search ability, requirement of exponential population size, visualization of results, and especially computation cost. Although in real world, numerous optimization problems are considered as MaOPs but they contain redundant objectives. With these problems, removing the redundant objectives can alleviate these difficulties of MaOPs. Recently, clustering has been applied to remove redundant objectives such as Mutual Information and Clustering Algorithm (MICA-NORMOEA) and Objective Clustering-Based Objective Reduction Algorithm (OC-ORA). However, these clustering-based algorithms are computationally complex and they also manually tune a set of parameters. This paper proposes a clustering-based objective reduction method (COR) for MaOPs. The proposed method is more efficient than existing ones and it can automatically determine these parameters. Moreover, the proposed method still achieves comparable results with existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.