Abstract

The present work has been undertaken to study the feasibility of storing solar energy using phase change materials (like paraffin) and utilizing this energy to heat water for domestic purposes during nighttime. This ensures that hot water is available through out the day. The system consists of two simultaneously functioning heat-absorbing units. One of them is a solar water heater and the other a heat storage unit consisting of Phase Change Material (PCM). The water heater functions normally and supplies hot water during the day. The storage unit stores the heat in PCMs during the day and supplies hot water during the night. The storage unit utilizes small cylinders made of aluminium, filled with paraffin wax as the heat storage medium and integrated with a Solar Collector to absorb solar heat. At the start of the day the storage unit is filled with water completely. This water is made to circulate between the solar collector and the PCM cylinders. The water in the storage tank receives heat form the solar collector and transfers it to the PCM. The PCM undergoes a phase change by absorbing latent heat, excess heat being stored as sensible heat. The water supply in the night is routed to the storage unit using a suitable control device. The heat is recovered from the unit by passing water at room temp through it. As water is drawn from the overhead tank, fresh water enters the unit disturbing the thermal equilibrium, causing flow of heat from PCM to the water. The temperature of the heated water (outlet) is varied by changing the flow rate, which is measured by a flow meter. The storage tank is completely insulated to prevent loss of heat. The performance of the present setup is compared with that of a system using same PCM encapsulated in High Density PolyEthylene (HDPE) spherical shells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.