Abstract

In this work, an actuator fault detection problem for discrete-time Takagi-Sugeno fuzzy systems is tackled in a bounded error context where both state disturbances and measurement noise are assumed to be unknown but bounded with known bounds. First, a peak-to-peak performance synthesis method is applied to design a robust residual generator against the considered process disturbances and measurement noise. Meanwhile, an improved zonotopic approach is proposed to compute tight adaptive thresholds for residual evaluation. Then, a reliable set-membership fault detection strategy with the aid of generated residual signals and adaptive thresholds is introduced. Finally, the viability of the proposed method is demonstrated via a numerical simulation. Then, an experimentation on a 3D Crane system is performed to show its practicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.