Abstract
ABSTRACT Pine wilt disease (PWD) is one of the most destructive forest diseases in the world. Therefore, timely monitoring of PWD is essential to the preservation of the ecological environment. However, the complex topography of PWD-outbreak locations affords many limitations in the manual detection of the disease. The use of unmanned aerial vehicles (UAVs) and deep learning technology to detect PWD-infected trees has gained popularity in recent years. In this study, we configured the You Only Look Once version 3 (YOLOv3) model according to the characteristics of the three disease stages of PWD and proposed an improved model called Effi_YOLO_v3. The results revealed that the improved model achieved good detection performance. The proposed model yielded a mean average precision (mAP) of 94.39%, and the classification of the different infection stages was relatively accurate. The recall values for the classifications of trees in the early-infection, late-infection, and death stages were 89.15%, 86.13%, and 86.77%, respectively. This indicates that the model offers good applicability in detecting different stages of PWD in trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.