Abstract

Wake-up receivers are gaining importance in power-aware wireless sensor networks, as they significantly reduce power consumption during RF reception, enabling asynchronous communication with low latency. However, the performance of wake-up receivers still lags behind that of off-the-shelf RF transceivers. There is a growing demand for higher sensitivity, enhanced reliability, and lower latency while maintaining the lowest power consumption. In this article, our goal is to advance the performance of wake-up receivers based on off-the-shelf components and low-frequency pattern matchers. Through a systematic investigation, we proposed multiple improvements aimed at enhancing wake-up receiver performance and reliability. We introduced an improved passive envelope detector and realized a wake-up receiver for the 868 MHz band, which achieves a power consumption of 5.71 μW and latency of 9.02 ms. Our proposed wake-up receiver is capable of detecting signals down to an average power level of -61.6 dBm. These achievements represent significant advancements compared to the existing state of research on wake-up receivers based on low-frequency pattern matchers. Recent articles have not been able to attain such improved values in signal detection, power consumption, and latency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call