Abstract

The free induction decay (FID) quality signal of a proton precession magnetometer is closely related to tuning precision. To solve the commonly used current tuning problem method, we propose improving control algorithm tuning based on singular value decomposition (SVD). The space matrix is constructed by acquiring an analog-to-digital converter (ADC) for untuned FID signals, then conducting SVD to eliminate noise and obtain a useful signal. The fast Fourier transform (FFT) is then applied to the denoised FID signal to extract the time-frequency feature. Based on theory analysis, simulation modeling and actual FID signal testing, results show that compared to general tuning methods such as peak detection and auto correlation, our proposed algorithm improves sensor tuning precision and shortens tuning process time to one second or less.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.