Abstract
Abstract An improved transfer matrix method is developed to analyze nonlinear rotor-bearing systems. The rotating shaft is described by the Timoshenko beam theory which considers the effect of the rotary inertia and shear deformation. A typical roller bearing model is assumed which has cubic nonlinear spring and linear damping characteristics. Transfer matrices for the Timoshenko shaft element, disk element, and nonlinear bearing element are derived and the global transfer matrix is formed. The steady-state response of synchronous, subharmonic, and superharmonic whirls is determined using the harmonic balance method. Two numerical examples are presented to demonstrate the effectiveness of this approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.