Abstract

The nine-phase six-terminal induction machine has recently been proposed as a promising contender to the conventional six-phase asymmetrical winding machine in terms of torque density, phase current quality, stator winding simplicity, and fault-tolerant capability. However, the relatively lower dc-link voltage utilization of a single neutral arrangement in multiphase machines with multiple three-phase windings represents, in general, a technical challenge when compared to windings with isolated star points. Therefore, this paper proposes a new pseudo six-phase winding layout suitable for medium-voltage high-power induction machines, which employs quadruple three-phase stator winding sets, while providing the same terminal behavior of a nine-phase six-terminal winding. Additionally, like the traditional six-phase winding, two possible neutral arrangements can be configured. The proposed winding configuration provides the same dc-link voltage utilization as in conventional dual three-phase winding machines with isolated neutrals. The effect of the circulating zero-sequence current component experienced with a single neutral arrangement can also be avoided. A 1.5 Hp prototype induction machine is used to experimentally validate the proposed six-phase winding layout under both healthy and fault conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.