Abstract
The vesicular acetylcholine transporter (VAChT) in the brain is an important presynaptic cholinergic biomarker, and neuroimaging studies of VAChT may provide in vivo information about psychiatric and neurologic conditions including Alzheimer's disease that are not accessible by other methods. The 18 F-labeled radiotracer, ((-)-(1-(-8-(2-[18 F]fluoroethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)piperidin-4-yl)(4-fluorophenyl)-methanone ([18 F]VAT, 1), was reported as a selective and high affinity ligand for the in vivo imaging of VAChT. The synthesis of [18 F]VAT has been reported in a two-step procedure with total 140 min, which includes preparation of 2-[18 F]fluoroethyltosylate and alkylation of benzovesamicol (-)-5 precursor with this radiosynthon using two different automated production modules consecutively. A multiple step synthetic route was employed for the synthesis of stereospecific precursor benzovesamicol (-)-5, which is difficult to be adapted for scale-up. To make the production of this tracer more amenable for clinical imaging, we present an improved total synthesis protocol to attain [18 F]VAT: (1) a tosylethoxy group being pre-installed tosylate precursor (-)-8 is synthesized to render a simple one-step radiofluorination under mild conditions; (2) The key optically active intermediate benzovesamicol (-)-5 was obtained via the regio- and enantio-enriched ring-opening amination of meso-epoxide 3 with 4-phenylpiperidine derivative 2 under catalysis of a chiral salenCo(III) catalyst 4b, which dramatically simplifies the synthetic route of the tosylate precursor (-)-8. [18 F]VAT 1 was prepared within ~65 min with desired chemical and radiochemical purities, via a fully automated procedure, using a commercial PET tracer production module. The final drug product was obtained as a sterile, pyrogen-free solution that conforms United States Pharmacopeia (USP) <823> requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of labelled compounds & radiopharmaceuticals
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.