Abstract

High-resolution atomic force microscopy (AFM) of biomacromolecules is a valuable method for structural studies in biology. Traditionally, the surfaces used for AFM imaging of individual molecules are limited to mica, graphite, and glass. Because these substrates have certain shortcomings, new or modified surfaces that improve the quality of AFM imaging are highly desirable. Here, we describe an improved substrate for imaging of individual biomacromolecules with high-resolution AFM based on graphite surfaces coated by physical adsorption. We provide a detailed methodology, including the chemical structure, synthesis, characterization and the use of a substance that modifies the surface of freshly cleaved graphite, making it suitable for adsorption and AFM visualization of various biomacromolecules while minimizing spatial distortions. We illustrate the advantages of the modified graphite over regular surfaces with examples of high-resolution single-molecule imaging of proteins, polysaccharides, DNA and DNA-protein complexes. The proposed methodology is easy to use and helps to improve substantially AFM imaging of biomacromolecules of various natures, including flexible and/or unstructured sub-molecular regions that are not seen on other AFM substrates. The proposed technique has the potential to improve the use of AFM in structural biology for visualization and morphometric characterization of macromolecular objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.