Abstract

A streamline curvature throughflow numerical approach is assessed and modified to better approximate the flow fields of transonic axial compression systems. Improvements in total pressure loss modeling are implemented, central to which is a physics-based shock model, to ensure accurate and reliable off-design performance prediction. The new model accounts for shock geometry changes, with shock loss estimated as a function of inlet relative Mach number, blade section loading (flow turning), solidity, leading edge radius, and suction surface profile. Data from a single-stage, isolated rotor provide the basis for experimental comparisons. Improved performance prediction is shown. The importance of properly accounting for shock geometry and loss changes with operating conditions is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call