Abstract

A Bayesian formulation for a popular conjunctive cognitive diagnosis model, the reduced reparameterized unified model (rRUM), is developed. The new Bayesian formulation of the rRUM employs a latent response data augmentation strategy that yields tractable full conditional distributions. A Gibbs sampling algorithm is described to approximate the posterior distribution of the rRUM parameters. A Monte Carlo study supports accurate parameter recovery and provides evidence that the Gibbs sampler tended to converge in fewer iterations and had a larger effective sample size than a commonly employed Metropolis-Hastings algorithm. The developed method is disseminated for applied researchers as an R package titled "rRUM."

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.