Abstract

In this paper, we present a dual-band microstrip bandpass filter (BPF) with an improved stopband, which was constructed by a quad-mode stub-loaded resonator (SLR). Since the SLR is able to produce multiresonance within a single unit, the area saving is significant. The proposed quad-mode SLR was implemented by two stubs allocated at symmetry places, thus the even-/odd-mode can be applied to analysis the resonance. Moreover, to shift the spurious passband, the step impedance structure was applied to shift the harmonic resonance to the higher frequency. Design procedure for high performance dual-band BPF is proposed, and filter examples were designed for wireless local area network (WLAN) of 2.4/5.2 GHz. The measured insertion losses, return losses and fractional bandwidths (FBW) are 1.43 dB, 10 dB, and 14.8% at 2.4 GHz and 1.34 dB, 10 dB, and 12.9% at 5.2 GHz. Moreover, by applying two quarter-wavelength stubs on the input/output ports, the passband selectivity with an isolation of 40 dB can be achieved. The simulation and measurement have a close match, verifying the design concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.