Abstract

Studying the car-following model contributes to improving vehicle driving efficiency and traffic flow stability within the context of connected automated vehicles (CAVs). Therefore, an improved stochastic car-following model (SMLVM) is proposed in this paper, building upon the traditional FVD model and BLVD model. This new model comprehensively considers four deterministic factors: acceleration, velocity, headway, and optimal speed memory of multiple preceding vehicles, as well as the comprehensive influence of stochastic factors on car-following behavior during the traveling process. Meanwhile, weight functions are utilized to represent the varying strengths of influence from vehicles ahead with different positions and speeds on the following vehicle. The SMLVM model is categorized and discussed based on practical application scenarios in this paper. When the focus is primarily on fundamental traffic flow behavior, relative motion between vehicles, and other basic principles, the SMLVM model degenerates into the MLVM model. Through stability analysis and simulation experiments on MLVM model, critical stability conditions are derived. Comparisons with other classical models demonstrate that the MLVM model exhibits stronger stability and resistance to disturbances. When the focus is primarily on various realistic driving scenarios, through simulation experiments on SMLVM models in different scenarios, it is found that the influence of stochastic factors on SMLVM models mainly depends on the magnitude of the intensity of stochastic fluctuations, which is rarely affected by the specific functional expressions of the stochastic terms. Finally, empirical analysis is conducted by selecting five sets of processed data from the next-generation simulation (NGSIM) dataset. Based on parameter estimation using the SMLVM model, and a comparison is made with the FVD model and BLVD model. The results confirm that the model proposed in this paper fits vehicle speeds better and absorbs disturbances more effectively, and exhibiting greater stability in traffic flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call