Abstract

Quantitative reconstructions of past climates are an important resource for evaluating how well climate models reproduce climate changes. One widely used statistical approach for making such reconstructions from fossil biotic assemblages is weighted averaging partial least-squares regression (WA-PLS). There is however a known tendency for WA-PLS to yield reconstructions compressed towards the centre of the climate range used for calibration, potentially biasing the reconstructed past climates. We present an improvement of WA-PLS by assuming that: (i)the theoretical abundance of each taxon is unimodal with respect to the climate variable considered; (ii)observed taxon abundances follow a multinomial distribution in which the total abundance of a sample is climatically uninformative; and (iii) the estimate of the climate value at a given site and time makes the observation most probable, i.e. it maximizes the log-likelihood function. This climate estimate is approximated by weighting taxon abundances in WA-PLS by the inverse square of their climate tolerances. We further improve the approach by considering the frequency ( fx) of the climate variable in the training dataset. Tolerance-weighted WA-PLS with fx correction greatly reduces the compression bias, compared with WA-PLS, and improves model performance in reconstructions based on an extensive modern pollen dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.