Abstract

The paper presents an improved statistical analysis of the least mean fourth (LMF) adaptive algorithm behavior for a stationary Gaussian input. The analysis improves previous results in that higher order moments of the weight error vector are not neglected and that it is not restricted to a specific noise distribution. The analysis is based on the independence theory and assumes reasonably slow learning and a large number of adaptive filter coefficients. A new analytical model is derived, which is able to predict the algorithm behavior accurately, both during transient and in steady-state, for small step sizes and long impulse responses. The new model is valid for any zero-mean symmetric noise density function and for any signal-to-noise ratio (SNR). Computer simulations illustrate the accuracy of the new model in predicting the algorithm behavior in several different situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.