Abstract
Vehicle speed estimation is one of the most critical issues in intelligent transportation system (ITS) research, while defining distance and identifying direction have become an inseparable part of vehicle speed estimation. Despite the success of traditional and deep learning approaches in estimating vehicle speed, the high cost of deploying hardware devices to get all related sensor data, such as infrared/ultrasonic devices, Global Positioning Systems (GPS), Light Detection and Ranging (LiDAR systems), and magnetic devices, has become the key barrier to improvement in previous studies. In this paper, our proposed model consists of two main components: 1) a vehicle detection and tracking component – this module is designed for creating reliable detection and tracking every specific object without doing calibration; 2) homography transformation regression network – this module has a function to solve occlusion issues and estimate vehicle speed accurately and efficiently. Experimental results on two datasets show that the proposed method outperforms the state-of-the-art methods by reducing the mean square error (MSE) metric from 14.02 to 6.56 based on deep learning approaches. We have announced our test code and model on GitHub with <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/ervinyo/Speed-Estimation-Using-Homography-Transformation-and-Regression-Network</uri> .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.