Abstract
In this paper, an improved spectral conjugate gradient algorithm is developed for solving nonconvex unconstrained optimization problems. Different from the existent methods, the spectral and conjugate parameters are chosen such that the obtained search direction is always sufficiently descent as well as being close to the quasi-Newton direction. With these suitable choices, the additional assumption in the method proposed by Andrei on the boundedness of the spectral parameter is removed. Under some mild conditions, global convergence is established. Numerical experiments are employed to demonstrate the efficiency of the algorithm for solving large-scale benchmark test problems, particularly in comparison with the existent state-of-the-art algorithms available in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.