Abstract

This paper aims to improve the accuracy of software defect prediction by using a prediction model based on grey incidence analysis and Naive Bayes algorithm. The model employs the Naïve Bayes as the basic classifier of the software defect prediction model. The grey incidence analysis is used to analyze the relation between software modules and ideal modules. Then, the grey correlation degree is embedded into the Naive Bayes classification model as a feature attribute. According to the comparison and analysis of NASA’s public dataset, the prediction model in this paper improves the prediction accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.