Abstract

Edge detectors have traditionally been an essential part of many computer vision systems. There are different methods that have been proposed for improving edge detection in real images. This paper proposes an edge detection method based on the Sobel technique and generalized type-2 fuzzy logic systems. To limit the complexity of handling generalized type-2 fuzzy logic, the theory of $$\alpha $$?-planes is used. Simulation results are obtained with the Sobel operator (without fuzzy logic), then with a type-1 fuzzy logic system (T1FLS), an interval type-2 fuzzy logic system (IT2FLS) and with a generalized type-2 fuzzy logic system (GT2FLS). The proposed generalized type-2 fuzzy edge detection method is tested with synthetic images with promising results. To illustrate the advantages of using generalized type-2 fuzzy logic in combination with the Sobel operator, the figure of merit of Pratt measure is applied to measure the accuracy of the edge detection process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.