Abstract
Multiphase flows are prevalent in both natural and engineered systems. The study of multiphase flow problems using numerical simulation is challenging due to the presence of high nonlinearities and moving interfaces. In this paper, an improved multiphase smoothed particle hydrodynamics (SPH) model is proposed for simulating multiphase flows. In the improved multiphase SPH model, an improved interface repulsive force model is proposed to reduce the interpenetration of particles at the multiphase interface and make the multiphase interface smooth and clear, and an improved kernel gradient correction is introduced to optimize the computational results. In addition, the particle shifting technology is applied to make the particle distribution uniform. Five numerical examples including the Rayleigh–Taylor instability, non-Boussinesq lock-exchange problem, square droplet deformation, single bubble rise, and circular droplet oscillation are investigated to verify the correctness and effectiveness of the improved multiphase SPH model. The results demonstrate that the improved multiphase SPH approach is effective in modeling multiphase flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.