Abstract

Linear programming (LP) is an important field of optimization. Even though, interior point methods are polynomial algorithms, many LP practical problems are solved more efficiently by the primal and dual revised simplex methods (RSM); however, RSM has a poor performance in hard LP problems (HLPP) as in the Klee-Minty Cubes problem. Among LP methods, the hybrid method known as Simplex-Genetic (SG) is very robust to solve HLPP. The objective of SG is to obtain the optimal solution of a HLPP, taking advantages from each one of the combined methods -a genetic algorithm (GA) and the classical primal RSM-. In this paper a new SG method named Improved Simplex Genetic Method (ISG) is presented. ISG combines a GA (with special genetic operators) with both primal and dual RSM. Numerical experimentation using some instances of the Klee-Minty cubes problem shows that ISG has a better performance than both RSM and SG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.