Abstract

Background and ObjectivesDiagnosis of Parkinson's with higher accuracy is always desirable to slow down the progression of the disease and improved quality of life. There are evidences of inherent neurological differences between male and females as well as between elderly and adults. However, the potential of such gender and age infomration have not been exploited yet for Parkinson's identification. MethodsIn this paper, we develop a sex-specific and age-dependent classification method to diagnose the Parkinson's disease using the online handwriting recorded from individuals with Parkinson's (n = 37; m/f-19/18;age-69.3 ± 10.9yrs) and healthy controls (n = 38; m/f-20/18;age-62.4 ± 11.3yrs). A support vector machine ranking method is used to present the features specific to their dominance in sex and age group for Parkinson's diagnosis. ResultsThe sex-specific and age-dependent classifier was observed significantly outperforming the generalized classifier. An improved accuracy of 83.75% (SD = 1.63) with the female-specific classifier, and 79.55% (SD = 1.58) with the old-age dependent classifier was observed in comparison to 75.76% (SD = 1.17) accuracy with the generalized classifier. ConclusionsCombining the age and sex information proved to be encouraging in classification. A distinct set of features were observed to be dominating for higher classification accuracy in a different category of classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.