Abstract
Reliability analysis for rare events has proven to be a significant challenge, particularly in non-linear and complex scenarios. Despite the effectiveness of Sequential Importance Sampling (SIS) and Subset Simulation (SUS) in addressing high-dimensional small failure probability problems, the computational burden associated with mechanical simulations for complex structures remains substantial. To address this issue, this paper introduces a novel approach referred to as SIS and Kriging Metamodel Integration (SISAK), designed for computing small failure probabilities in high dimensions. This method involves generating a small number of samples from the original distribution to construct an adaptive metamodel, which is then iteratively optimized using a series of intermediate distributions introduced by SIS. By substituting the function for intermediate distributions with a continuously optimized metamodel, the enhanced approach significantly reduces the computational load associated with mechanical model evaluations compared to the direct use of SIS. This approach does not depend on determining the most probable failure point and does not require consideration of the failure domain shape. Additionally, it inherits the advantages of SIS in addressing high-dimensional small failure probabilities, making it well-suited for structural reliability analysis of nonlinear systems, discontinuous failure domains, cascading functions, and high-dimensional problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.