Abstract

Simulating an evolving aerosol population in a reactor containment is essential for estimating the radioactivity that is possible to leak to the environment. In this study, a sectional model is developed to simulate multi-component aerosol dynamics in the containment during severe accidents of a pressurized water reactor by improving the widely used MAEROS (Multicomponent AEROSol) model. An important advantage of the improved model is its simplified calculation method by introducing a series of correction factors to the equation coefficients when the thermal boundary conditions and the aerosol particle density in the containment change continuously. In addition, the restriction of the maximum section number in the MAEROS model is removed. The reliability of the model is validated against four analytical solutions and three sets of test data. Moreover, the improvements in the model are also proven to be necessary to effectively capture the influences of thermal boundary conditions and aerosol particle density on aerosol dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call