Abstract
The second-order generalized integrator based quadrature signal generator (SOGI-QSG) is able to produce in-quadrature signals for many applications, such as frequency estimation, grid synchronization, and harmonic extraction. However, the SOGI-QSG is sensitive to input dc and harmonic components with unknown frequencies (e.g., interharmonics). To overcome the drawback, this letter begins by analyzing the dynamic response of SOGI-QSG from the first-order system (FOS) perspective. A second-order SOGI-QSG (SO-SOGI-QSG) with a fourth-order transfer function is then proposed, after referring to the relationship between standard FOS and second-order system. The proposed method is subsequently found to inherit the simplicity of the SOGI-QSG, while demonstrates better disturbance attenuation. Its parameter design procedure is also easy to understand, and can be followed step-by-step without difficulty. Performance of the proposed SO-SOGI-QSG is finally validated by experimental results presented in this letter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.