Abstract

We describe here an optimization study of the sample preparation conditions for sensitive detection of peptides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Among many factors in the conditions, we varied the percent acetonitrile in the peptide solution, the percent acetonitrile in the matrix solution and the α-cyano-4-hydroxycinnamic acid (CHCA) concentration in the matrix solution. CHCA was chosen because it is the most frequently used matrix for analyzing peptides. The well-established dried-droplet method was employed for sample deposition. The examined range of the concentration of CHCA was from 0.01 to 10 mg/ml, and the MeCN content of the solvent for matrix/analyte was 10% to 50%. The indicator for the detection sensitivity was the S/N ratio of the peaks of peptides used. Highly increased sensitivity (100- to 1000-fold) was observed for the optimal CHCA concentration of 0.1 mg/ml in 20% MeCN/0.1% aq. trifluoroacetic acid (TFA), as compared with the conventional concentration (10 mg/ml) in 50% MeCN/0.1% aq. TFA. For example, the limit of detection of human ACTH 18-39 was 10 amol/well for the optimal condition but 10 fmol/well for the conventional condition. The optimal condition (0.1 mg/ml CHCA in 20% MeCN/0.1% aq. TFA) was verified with five model peptides and provided significant improvement in sensitivity (by two to three orders of magnitude) compared with the conventional conditions. Optimizing the CHCA concentration and solvent composition significantly improved the detection sensitivity in the analysis of peptides by MALDI-MS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.