Abstract
The classic S-plane control method combines PD structure with fuzzy control theory, with the advantages of a simple control structure and fewer parameters to be adjusted. It has been proved as a practical method in an autonomous underwater vehicle (AUV) motion control at low and medium speeds, but it takes no account of the situational static load and varying hydrodynamic forces which influence the control quality and even result in a “dolphin effect” at the time of high-speed movement. For this reason, an improved S-plane controller is designed based on the sliding mode variable structure, sliding mode surface, and control items in order to respond to the situational static load and high-speed movement. The improved S-plane controller is verified by Lyapunov stability analysis. The thrust allocation strategies are also discussed with constraints introduced in accordance with task requirements. In order to verify the practicability and effectiveness of the improved S-plane controller, both simulation experiments and field trials of AUV motion control, long-range cruise, and path point following were carried out. The results have demonstrated the superiority of the improved S-plane controller over the classic S-plane controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.